Abstract

Discrete-time Lotka-Volterra competition models are obtained by applying nonstandard finite difference (NSFD) schemes to the continuous-time counterparts of the model. The NSFD methods are noncanonical symplectic numerical schemes when applying to the predator-prey model $x'=x-xy$ and $y'=-y+xy$. The local dynamics of the discrete-time model are analyzed and compared with the continuous model. We find the NSFD schemes that preserve the local dynamics of the continuous model. The local stability criteria are exactly the same between the continuous model and the discrete model independent of the step size. Two specific discrete-time Lotka-Volterra competition models by NSFD schemes that preserve positivity of solutions and monotonicity of the system are also given. The two discrete-time models are dynamically consistent with their continuous counterpart.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call