Abstract

AbstractConcept drift refers to the change in data distributions and evolving relationships between input and output variables with the passage of time. To analyze such variations in learning environments and generate models which can accommodate changing performance of predictive systems is one of the challenging machine learning applications. In general, the majority of the existing schemes consider one of the specific drift types: gradual, abrupt, recurring, or mixed, with traditional voting setup. In this work, we propose a novel data stream framework, dynamically adaptive and diverse dual ensemble (DA‐DDE) which responds to multiple drift types in the incoming data streams by combining online and block‐based ensemble techniques. In the proposed scheme, a dual diversified ensemble‐based system is constructed with the combination of active and passive ensembles, updated over a diverse set of resampled input space. The adaptive weight setting method is proposed in this work which utilizes the overall performance of learners on historic as well as recent concepts of distributions. Further a dual voting system has been used for hypothesis generation by considering dynamic adaptive credibility of ensembles in real time. Comparative analysis with 14 state‐of‐the‐art algorithms on 24 artificial and 11 real datasets shows that DA‐DDE is highly effective in handling various drift types.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.