Abstract

In chicken immature erythrocytes, class 1 acetylated histones are rapidly tri- and tetra-acetylated and rapidly deacetylated. Class 2 acetylated H3 and H4 are rapidly acetylated to mono- and di-acetylated isoforms and slowly deacetylated. Our previous studies suggested that class 1 acetylated histones were primarily associated with transcriptionally active DNA (beta(A)-globin) but not competent DNA (epsilon-globin). Chromatin salt solubility (chromatin fiber oligomerization) is directly influenced by hyperacetylation. In this study we investigated the association of class 1 histones with beta(A)- and epsilon-globin DNA by measuring their loss of solubility rates in 150 mm NaCl and 3 mm MgCl(2) as a function of hyperacetylated histone deacetylation. Expressed and competent chromatin was associated with class 1 acetylated histones. As most active chromatin and hyperacetylated histones are associated with the low salt-insoluble residual nuclear material containing the nuclear matrix, we investigated whether hyperacetylated histones are bound to the beta(A)- and epsilon-globin DNA in this fraction. In chromatin immunoprecipitation assays, we found that the beta(A)- and epsilon-globin coding regions are bound to hyperacetylated H3 and H4. Our observations are consistent with a model in which nuclear matrix-associated histone acetyltransferases and deacetylases mediate a dynamic attachment between active and competent chromatin and the nuclear matrix.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.