Abstract

We address the issue of whether chemical alterations of nucleobases are an effective tool to modulate charge transfer through DNA molecules. Our investigation uses a multilevel computational approach based on classical molecular dynamics and quantum chemistry. We find yet another piece of evidence that structural fluctuations are a key factor to determine the electronic structure of double-stranded DNA. We argue that the electronic structure and charge transfer ability of flexible polymers is the result of a complex intertwining of various structural, dynamical and chemical factors. Chemical intuition may be used to design molecular wires, but this is not the sole component in the complex charge transfer mechanism through DNA.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.