Abstract
The traditional dynamical phase transition refers to the appearance of singularities in an observable with respect to a control parameter for a late-time state or singularities in the rate function of the Loschmidt echo with respect to time. Here, we study the many-body dynamics in a continuously monitored free fermion system with conditional feedback under open boundary conditions. We surprisingly find a novel dynamical transition from a logarithmic scaling of the entanglement entropy to an area-law scaling as time evolves. The transition, which is noticeably different from the conventional dynamical phase transition, arises from the competition between the bulk dynamics and boundary skin effects. In addition, we find that while quasidisorder or disorder cannot drive a transition for the steady state, a transition occurs for the maximum entanglement entropy during the time evolution, which agrees well with the entanglement transition for the steady state of the dynamics under periodic boundary conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.