Abstract

The authors present new analytic formulae for the phonon density of states and inverse decay length of a one-dimensional granular structure and show that for large grains with no disorder these are universal functions of a dimensionless frequency Omega and a velocity of sound ratio, C. The density of states at frequencies Omega <C is shown to exhibit a granularity-induced enhancement, which is unaffected by the presence of disorder. For the first time a one-dimensional analogue of a network glass below a smeared rigidity percolation transition is analysed. It is shown that this system also exhibits a low-frequency density-of-states enhancement, whose magnitude is determined by the velocity of sound ratio C alone.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.