Abstract
Properties of the solutions to differential equations on the torus with a complete set of multivalued first integrals are considered, including the existence of an invariant measure, the averaging principle, and the infiniteness of the number of zeros for integrals of zero-mean functions along trajectories. The behavior of systems with closed trajectories of large period is studied. It is shown that a generic system acquires a limit mixing property as the periods tend to infinity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Steklov Institute of Mathematics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.