Abstract

Consider an operator equation B( u) − f = 0 in a real Hilbert space. Let us call this equation ill-posed if the operator B′( u) is not boundedly invertible, and well-posed otherwise. The dynamical systems method (DSM) for solving this equation consists of a construction of a Cauchy problem, which has the following properties: (1) it has a global solution for an arbitrary initial data, (2) this solution tends to a limit as time tends to infinity, (3) the limit is the minimal-norm solution to the equation B( u) = f. A global convergence theorem is proved for DSM for equation B( u) − f = 0 with monotone C loc 2 operators B.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.