Abstract
Let E be a row finite directed graph with no sinks and (XE, ĎE) the one-sided edge shift space. Then the graph C*-algebra C*(E) contains the commutative algebra C0(XE). Moreover if E is locally finite so that the canonical completely positive map ĎE on C*(E) is well-defined, ĎE|C0(XE) coincides with the *-homomorphism [Formula: see text]. In this paper we first show that if two edge shift spaces (XE, ĎE) and (XF, ĎF) are topologically conjugate, there is an isomorphism of C*(E) onto C*(F), and if the graphs are locally finite the isomorphism transforms ĎE|C0(XE) onto ĎF|C0(XF), which has been known for CuntzâKrieger algebras. Let ht(ĎE) be VoiculescuâBrown topological entropy of ĎE. In case E is finite, it is well-known that the values ht(ĎE), [Formula: see text], hl(E) and hb(E) all coincide, where [Formula: see text] is the AF core of C*(E) and hl(E), hb(E) are the loop, block entropies of E respectively. If E is irreducible and infinite, [Formula: see text] has been known recently, and here we show that [Formula: see text], where Et is the transposed graph of E. Also some dynamical systems related with AF subalgebras [Formula: see text] of [Formula: see text] are examined to prove that [Formula: see text] for each vertex v.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.