Abstract
Gaussian process (GP) models form an emerging methodology for modelling nonlinear dynamic systems which tries to overcome certain limitations inherent to traditional methods such as e.g. neural networks (ANN) or local model networks (LMN). The GP model seems promising for three reasons. First, less training parameters are needed to parameterize the model. Second, the variance of the model's output depending on data positioning is obtained. Third, prior knowledge, e.g. in the form of linear local models can be included into the model. In this paper the focus is on GP with incorporated local models as the approach which could replace local models network. Much of the effort up to now has been spent on the development of the methodology of the GP model with included local models, while no application and practical validation has yet been carried out. The aim of this paper is therefore twofold. The first aim is to present the methodology of the GP model identification with emphasis on the inclusion of the prior knowledge in the form of linear local models. The second aim is to demonstrate practically the use of the method on two higher order dynamical systems, one based on simulation and one based on measurement data.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Engineering Applications of Artificial Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.