Abstract
We propose an approach to the analysis of turbulent oscillations described by nonlinear boundary-value problems for partial differential equations. This approach is based on passing to a dynamical system of shifts along solutions and uses the notion of ideal turbulence (a mathematical phenomenon in which an attractor of an infinite-dimensional dynamical system is contained not in the phase space of the system but in a wider functional space and there are fractal or random functions among the attractor “points”). A scenario for ideal turbulence in systems with regular dynamics on an attractor is described; in this case, the space-time chaotization of a system (in particular, intermixing, self-stochasticity, and the cascade process of formation of structures) is due to the very complicated internal organization of attractor “points” (elements of a certain wider functional space). Such a scenario is realized in some idealized models of distributed systems of electrodynamics, acoustics, and radiophysics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.