Abstract

AbstractA susceptible–exposed–infectious theoretical model describing Tasmanian devil population and disease dynamics is presented and mathematically analysed using a dynamical systems approach to determine its behaviour under a range of scenarios. The steady states of the system are calculated and their stability analysed. Closed forms for the bifurcation points between these steady states are found using the rate of removal of infected individuals as a bifurcation parameter. A small-amplitude Hopf region, in which the populations oscillate in time, is shown to be present and subjected to numerical analysis. The model is then studied in detail in relation to an unfolding parameter which describes the disease latent period. The model’s behaviour is found to be biologically reasonable for Tasmanian devils and potentially applicable to other species.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.