Abstract

Spontaneously broken supersymmetry (SUSY) and a vanishingly small cosmological constant imply that R symmetry must be spontaneously broken at low energies. Based on this observation, we suppose that, in the sector responsible for low-energy R symmetry breaking, a discrete R symmetry remains preserved at high energies and only becomes dynamically broken at relatively late times in the cosmological evolution, i.e., after the dynamical breaking of SUSY. Prior to R symmetry breaking, the Universe is then bound to be in a quasi-de Sitter phase---which offers a dynamical explanation for the occurrence of cosmic inflation. This scenario yields a new perspective on the interplay between SUSY breaking and inflation, which neatly fits into the paradigm of high-scale SUSY: inflation is driven by the SUSY-breaking vacuum energy density, while the chiral field responsible for SUSY breaking, the Polonyi field, serves as the inflaton. Because R symmetry is broken only after inflation, slow-roll inflation is not spoiled by otherwise dangerous gravitational corrections in supergravity. We illustrate our idea by means of a concrete example, in which both SUSY and R symmetry are broken by strong gauge dynamics and in which late-time R symmetry breaking is triggered by a small inflaton field value. In this model, the scales of inflation and SUSY breaking are unified; the inflationary predictions are similar to those of F-term hybrid inflation in supergravity; reheating proceeds via gravitino decay at temperatures consistent with thermal leptogenesis; and the sparticle mass spectrum follows from pure gravity mediation. Dark matter consists of thermally produced winos with a mass in the TeV range.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call