Abstract
The dynamical (super)symmetries for various monopole systems are reviewed. For a Dirac monopole, non-smooth Runge–Lenz vector can exist; there is, however, a spectrum-generating conformal o(2,1) dynamical symmetry that extends into osp(1/1) or osp(1/2) for spin 1/2 particles. Self-dual 't Hooft–Polyakov-type monopoles admit an su(2/2) dynamical supersymmetry algebra, which allows us to reduce the fluctuation equation to the spin 0 case. For large r, the system reduces to a Dirac monopole plus a suitable inverse-square potential considered before by McIntosh and Cisneros, and by Zwanziger in the spin 0 case, and to the "dyon" of D'Hoker and Vinet for spin 1/2. The asymptotic system admits a Kepler-type dynamical symmetry as well as a "helicity-supersymmetry" analogous to the one Biedenharn found in the relativistic Kepler problem. Similar results hold for the Kaluza–Klein monopole of Gross–Perry–Sorkin. For the magnetic vortex, the N = 2 supersymmetry of the Pauli Hamiltonian in a static magnetic field in the plane combines with the o(2) × o(2,1) bosonic symmetry into an o(2) × osp(1/2) dynamical superalgebra.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.