Abstract

4H-SiC samples were bent in compression mode at temperature ranging from 400°C to 700°C. The introduced-defects were identified by Weak Beam (WB) and High Resolution Transmission Electron Microscopy (HRTEM) techniques. They consist of double stacking faults bound by 30° Si(g) partial dislocations whose glide locally transforms the material in its cubic phase. The velocity of partial dislocations was measured after chemical etching of the sample surface. The formation and the expansion of the double stacking faults are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.