Abstract

This work examines the initial growth and collapse stages of bubbles induced by laser ablation in liquids. First, the bubble shape and size are tracked using an ultrafast camera in a shadowgraph imaging setup. The use of an ultrafast camera ensures a high control of the reproducibility, because a thorough measurement of each bubble lifetime is performed. Next, an analytical cavitation-based model is developed to assess the thermodynamic bubble properties. This study demonstrates that the bubble evolution is adiabatic and driven by inertial forces. Surprisingly, it is found that the bubbles consist of significantly more solvent molecules than ablated matter. These results are valuable to the field of nanoparticle synthesis as they provide insight into the mechanics of laser ablation in liquids.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call