Abstract

The various dynamical regimes of collisional drift waves in a magnetized plasma column are experimentally studied. These unstable low-frequency electrostatic waves are related with strong modulations of the ion and electron density. The angular velocity of the rotating plasma column is the control parameter of the dynamics: regular, chaotic and turbulent regimes are obtained. The spatial extension of the system allows for the occurrence of spatiotemporal chaos. The time-delay auto-synchronization method of controlling chaos [K. Pyragas, Phys. Lett. A 170, 421 (1992)] though purely temporal is successfully applied. A numerical study using coupled nonlinear oscillators exhibiting chaos is compared to the experimental results. The control method is tested on this model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call