Abstract

The Fv fragment, which is a smallest antigen-binding unit of immunoglobulin, has been used for a 1H-15N shift correlation NMR study of the dynamical structure of the antibody combining site. Fv has been prepared by clostripain digestion of a mouse anti-dansyl IgG2a monoclonal antibody that lacks the entire CH1 domain. We have previously reported that of the six hypervariable regions, three each from the heavy chain (H1, H2, and H3) and the light chain (L1, L2, and L3), H3 is primarily responsible for the antigen binding in the anti-dansyl Fv fragment. The backbone amide nitrogens of all non-proline amino acid residues in H3 have been multiply labeled with 15N. [15N]T2 relaxation times and hydrogen-deuterium exchange rates of the amide groups of the main chain were measured in the absence and presence of epsilon-dansyl-L-lysine (DNS-Lys). It has been shown that (1) in the absence of DNS-Lys H3 displays a significant degree of internal motion and (2) antigen binding induces a significant change in the dynamical structure of H3.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.