Abstract

AbstractThe meaning of time in an open quantum system is considered under the assumption that both, system and environment, are quantum mechanical objects. The Hamilton operator of the system is non‐Hermitian. Its imaginary part is the time operator. As a rule, time and energy vary continuously when controlled by a parameter. At high level density, where many states avoid crossing, a dynamical phase transition takes place in the system under the influence of the environment. It causes a dynamical stabilization of the system what can be seen in many different experimental data. Due to this effect, time is bounded from below: the decay widths (inverse proportional to the lifetimes of the states) do not increase limitless. The dynamical stabilization is an irreversible process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.