Abstract

The time-dependent field equations of the nonlinear field systems, whose static soliton solutions are (global) vortex strings, are studied by a numerical approach. They concern (i) the theory of a single complex scalar field with a spontaneously broken U(1) symmetry, and (ii) the system of a complex scalar field doublet with an approximate U(2) symmetry. The obtained numerical solutions allow to clarify the dynamical behaviors of the systems under fluctuations. The systems are shown to have order-chaos phase transitions, but, despite phase transitions and deformations in field profiles by fluctuations, the shapes of the total field energy density distributions are rather stable.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.