Abstract

We study the stabilization properties of dipolar Bose-Einstein condensate by temporal modulation of short-range two-body interaction. Through both analytical and numerical methods, we analyze the mean-field Gross-Pitaevskii equation with short-range two-body and long-range, nonlocal, dipolar interaction terms. We derive the equation of motion and effective potential of the dipolar condensate by variational method. We show that there is an enhancement of the condensate stability due to the inclusion of dipolar interaction in addition to the two-body contact interaction. We also show that the stability of the dipolar condensate increases in the presence of time varying two-body contact interaction; the temporal modification of the contact interaction prevents the collapse of dipolar Bose-Einstein condensate. Finally we confirm the semi-analytical prediction through the direct numerical simulations of the governing equation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call