Abstract
We establish two conditions that ensure the nondivergence of additive recurrent networks with unsaturating piecewise linear transfer functions, also called linear threshold or semilinear transfer functions. As Hahnloser, Sarpeshkar, Mahowald, Douglas, and Seung (2000) showed, networks of this type can be efficiently built in silicon and exhibit the coexistence of digital selection and analog amplification in a single circuit. To obtain this behavior, the network must be multistable and nondivergent, and our conditions allow determining the regimes where this can be achieved with maximal recurrent amplification. The first condition can be applied to nonsymmetric networks and has a simple interpretation of requiring that the strength of local inhibition match the sum over excitatory weights converging onto a neuron. The second condition is restricted to symmetric networks, but can also take into account the stabilizing effect of nonlocal inhibitory interactions. We demonstrate the application of the conditions on a simple example and the orientation-selectivity model of Ben-Yishai, Lev Bar-Or, and Sompolinsky (1995). We show that the conditions can be used to identify in their model regions of maximal orientation-selective amplification and symmetry breaking.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.