Abstract

The Stoner model predicts that a two-component Fermi gas at increasing repulsive interactions undergoes a ferromagnetic transition. Using the random-phase approximation we study the dynamical properties of the interacting Fermi gas. For an atomic Fermi gas under harmonic confinement we show that the transverse (spin-flip) dynamical susceptibility displays a clear signature of the ferromagnetic phase in a magnon peak emerging from the Stoner particle-hole continuum. The dynamical spin susceptibilities could be experimentally explored via spin-dependent Bragg spectroscopy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call