Abstract

We present the results of a numerical study of the 2 by L spin 1/2 Heisenberg ladder. Ground state energies and the singlet-triplet energy gaps for L = (4-14) and equal rung and leg interaction strengths were obtained in a Lanczos calculation and checked against earlier calculations by Barnes et al. (even L up to 12). A related moments technique is then employed to evaluate the dynamical spin response for L=12 and a range of rung to leg interaction strength ratios (0 - 5). We comment on two issues, the need for reorthogonalization and the rate of convergence, that affect the numerical utility of the moments treatment of response functions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call