Abstract

We study the Z_{2} Bose-Hubbard model, a chain of interacting bosons the tunneling of which is dressed by a dynamical Z_{2} field. The interplay between spontaneous symmetry breaking (SSB) and topological symmetry protection gives rise to interesting fractional topological phenomena when the system is doped to certain incommensurate fillings. In particular, we hereby show how topological defects in the Z_{2} field can appear in the ground state, connecting different SSB sectors. These defects are dynamical and can travel through the lattice carrying both a topological charge and a fractional particle number. In the hardcore limit, this phenomenon can be understood through a bulk-defect correspondence. Using a pumping argument, we show that it survives also for finite interactions, demonstrating how boson fractionalization induced by topological defects can occur in strongly correlated bosonic systems. Our results indicate the possibility of observing this phenomenon, which appears for fermionic matter in solid-state and high-energy physics, using ultracold atomic systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.