Abstract

The world’s human population is increasing as is the demand for new sustainable sources of energy. Accordingly, microalgae-based carbohydrates for biofuel production are being considered as an alternative source of raw materials for producing biofuels. Microalgae grow in photobioreactors under constantly changing conditions. Models improve our understanding of microalgae growth. In this paper, a photoacclimated model for continuous microalgae cultures in photobioreactors was used to study the time-varying behavior and sensitivity of solutions under optimal productivity conditions. From the perspective of dynamic simulation in this work, light intensity was found to play an influential role in modifying metabolic pathways as a cell stressor. Enhancing carbohydrate productivity by combining nutritional deficiency and light intensity regulation modeling strategies could be helpful to optimize the process for the highest yield in large-scale cultivation systems. Under the proposed simulation conditions, a maximum carbohydrate productivity of 48.11 gCm−3d−1 was achieved using an optimal dilution rate of 0.2625 d−1 and 350 μmolm−2s−1 of light intensity. However, it is important to note that, a particular set of manipulated inputs can generate multiple outputs at a steady state. A numerical solution of the sensitivity functions indicated that the model outputs were especially sensitive to changes in parameters corresponding to a minimum nitrogen quota, maximum nitrogen intake rate, dilution rate, and maximum nitrogen quota compared to to other model parameters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.