Abstract

We simplify a criterion (due to Ibarlucía and the author) which characterizes dynamical simplices, that is, sets $K$ of probability measures on a Cantor space $X$ for which there exists a minimal homeomorphism of $X$ whose set of invariant measures coincides with $K$ . We then point out that this criterion is related to Fraïssé theory, and use that connection to provide a new proof of Downarowicz’ theorem stating that any non-empty metrizable Choquet simplex is affinely homeomorphic to a dynamical simplex. The construction enables us to prove that there exist minimal homeomorphisms of a Cantor space which are speedup equivalent but not orbit equivalent, answering a question of Ash.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.