Abstract

Multifunctional systems, such as molecular switches, exhibit multifunnel energy landscapes associated with the alternative functional states. In this contribution the multifunnel organization is decoded from dynamical signatures in the first passage time distribution between reactants and products. Characteristic relaxation rates are revealed by analyzing the kinetics as a function of the observation time scale, which scans the underlying distribution. Extracting the corresponding dynamical signatures provides direct insight into the organization of the molecular energy landscape, which will facilitate a rational design of target functionality. Examples are illustrated for multifunnel landscapes in biomolecular systems and an atomic cluster.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.