Abstract

The integration of rectifying effects with resistance switching in a self-rectifying memristor offers the opportunity to suppress the sneak current in high-density crossbar arrays for energy-efficient neuromorphic computing. Here, we report a new type of two-terminal self-rectifying memristor that gets rid of asymmetric complex structures by using CsPbBr3 perovskite nanocrystals (NCs). The simple metal-insulator-metal (Au/CsPbBr3 NCs/Au) configuration that eases integration exhibits multiple resistance states that can be precisely controlled by the stimulus properties and dynamical rectifying characteristics dependent on both the bias voltage and bias time. We have extended an earlier proposed theory that predicts electric-potential-distribution-controlled rectification to rationalize all the observed rectifying behavior that are regulated by mobile-ion-induced interfacial electrochemical reactions and found excellent agreement between theory and experiments. Our study thus demonstrates the possibility of constructing controllable self-rectifying memristors without involving asymmetric complex structures, paving a new way for resolving the sneak current issue in crossbar arrays of memristors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.