Abstract
We explore the robustness of a network against failures of vertices or edges where a fraction f of vertices is removed and an overload model based on betweenness is constructed. It is assumed that the load and capacity of vertex i are correlated with its betweenness centrality Bi as and (θ is the strength parameter, α is the tolerance parameter). We model the cascading failures following a local load preferential sharing rule. It is found that there exists a minimal α c when θ is between 0 and 1, and its theoretical analysis is given. The minimal α c characterizes the strongest robustness of a network against cascading failures triggered by removing a random fraction f of vertices. It is realized that the minimal α c increases with the increase of the removal fraction f or the decrease of average degree. In addition, we compare the robustness of networks whose overload models are characterized by degree and betweenness, and find that the networks based on betweenness have stronger robustness against the random removal of a fraction f of vertices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.