Abstract

We provide a self-contained theoretical analysis of the dynamical response of a one-dimensional electron system, as confined in a semiconductor quantum wire, within the random-phase approximation. We carry out a detailed comparison with the corresponding two- and three-dimensional situations, and discuss the peculiarities arising in the one-dimensional linear response from the nonexistence of low energy single-particle excitations and from the linear nature of the long wavelength plasmon mode. We provide a critical discussion of the analytic properties of the complex dielectric function in the complex frequency plane. We investigate the zeros of the complex dielectric function, and calculate the plasmon dispersion, damping, and plasmon spectral weight in one dimension. We consider finite temperature and impurity scattering effects on one-dimensional plasmon dispersion and damping. \textcopyright{} 1996 The American Physical Society.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.