Abstract

Abstract Excimer laser annealing (ELA) is frequently employed to fabricate low-temperature polycrystalline silicon films on glass substrate. The grain size and crystallinity of polycrystalline silicon films are significantly affected by the resolidification behavior during ELA. A real-time in situ time-resolved optical measurement system is developed to record the rapid phase transformation process during ELA. The average solidification velocity of liquid-Si is calculated from these optical spectra using MATLAB and Excel softwares. Field emission scanning electron microscopy images reveal maximum grain size of poly-Si films with a diameter of 1 μm, which is obtained in the complete melting regime of both frontside ELA and backside ELA. Recrystallization mechanisms of complete melting of Si thin films in frontside ELA and backside ELA are demonstrated. Resolidification scenarios of partial melting, near-complete melting and complete melting in frontside ELA and backside ELA are proposed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call