Abstract
We define a dynamical residue which generalizes the Guillemin–Wodzicki residue density of pseudo-differential operators. More precisely, given a Schwartz kernel, the definition refers to Pollicott–Ruelle resonances for the dynamics of scaling towards the diagonal. We apply this formalism to complex powers of the wave operator and we prove that residues of Lorentzian spectral zeta functions are dynamical residues. The residues are shown to have local geometric content as expected from formal analogies with the Riemannian case.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.