Abstract

Resonance regimes of two frequency different chemical oscillators coupled via pulsed inhibitory coupling with time delay τ have been studied theoretically and experimentally. The Belousov-Zhabotinsky reaction is used as a chemical oscillator. Regions of the 1: 1, 2: 3, 1: 2, 2: 5, and 1: 3 resonances, as well as complex oscillations and a regime in which one oscillator is suppressed have been found in the parameter plane “the ratio between the T2/T1-τ.” For the 1: 2 resonance, a sharp transition from one synchronized regime (called “0/0.5”) to the other one (called “0.2/0.7”) has been found. This transition (reminiscent to the transition between in-phase and anti-phase oscillations in case of the 1: 1 resonance) is controlled by time delay τ and the coupling strength.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call