Abstract

We have defined a type of clustering scheme preserving the connectivity of the nodes in a network, ignored by the conventional Migdal-Kadanoff bond moving process. In high dimensions, our clustering scheme performs better for correlation length and dynamical critical exponents than the conventional Migdal-Kadanoff bond moving scheme. In two and three dimensions we find the dynamical critical exponents for the kinetic Ising model to be z=2.13 and z=2.09 , respectively, at the pure Ising fixed point. These values are in very good agreement with recent Monte Carlo results. We investigate the phase diagram and the critical behavior of randomly bond diluted lattices in d=2 and 3 in the light of this transformation. We also provide exact correlation exponent and dynamical critical exponent values on hierarchical lattices with power-law and Poissonian degree distributions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.