Abstract

We associate a dynamicalr-matrix with any such subalgebraL of a finite dimensional self-dual Lie algebraA for which the scalar product ofA remains nondegenerate onL and there exists a nonempty open subsetĽ ⊂L so that the restriction of (ad λ)eEnd(A) toL \(^ \bot \) is invertible ∨λeĽ. Thisr-matrix is also well-defined ifL is the grade zero subalgebra of an affine Lie algebraA obtained from a twisted loop algebra based on a finite dimensional self-dual Lie algebraG. Application of evaluation homomorphisms to the twisted loop algebras yields spectral parameter dependentG ⊗G-valued dynamicalr-matrices that are generalizations of Felder’s ellipticr-matrices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.