Abstract

We have investigated the dynamical entanglement and quantum steering in a pulsed hybrid opto-electro-mechanical system. Using the symmetric and asymmetric criteria, the possibilities of bipartite entanglement, one-way steering, two-way steering, and collective tripartite steering have been studied between different output modes. In addition, the influence of the squeezing parameter on the amount of tripartite steering measurement is also examined. The results show that a higher electro-mechanical coupling rate leads to stronger tripartite steering. The microwave cavity mode can enhance the output quantum steering and remotely steers the optical cavity. Thus, the slower mode can steer the faster mode. Such hybrid systems can serve as frequency converters between microwave and optical domains and can have a profound impact on building quantum networks of microwave-operated superconducting quantum computers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call