Abstract
In closed quantum systems, a dynamical phase transition is identified by nonanalytic behaviors of the return probability as a function of time. In this work, we study the nonunitary dynamics following quenches across exceptional points in a non-Hermitian lattice realized by optical resonators. Dynamical quantum phase transitions with topological signatures are found when an isolated exceptional point is crossed during the quench. A topological winding number defined by a real, noncyclic geometric phase is introduced, whose value features quantized jumps at critical times of these phase transitions and remains constant elsewhere, mimicking the plateau transitions in quantum Hall effects. This work provides a simple framework to study dynamical and topological responses in non-Hermitian systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.