Abstract

Nonequilibrium states of closed quantum many-body systems defy a thermodynamic description. As a consequence, constraints such as the principle of equal a priori probabilities in the microcanonical ensemble can be relaxed, which can lead to quantum states with novel properties of genuine nonequilibrium nature. In turn, for the theoretical description it is in general not sufficient to understand nonequilibrium dynamics on the basis of the properties of the involved Hamiltonians. Instead it becomes important to characterize time-evolution operators, which adds time as an additional scale to the problem. In this perspective article we summarize recent progress in the field of dynamical quantum phase transitions, which are phase transitions in time with temporal nonanalyticities in matrix elements of the time-evolution operator. These transitions are not driven by an external control parameter, but rather occur due to sharp internal changes generated solely by unitary real-time dynamics. We discuss the obtained insights on general properties of dynamical quantum phase transitions, their physical interpretation, potential future research directions, as well as recent experimental observations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.