Abstract

Dynamical phase transitions (DPTs) are signaled by the non-analytical time evolution of the dynamical free energy after quenching some global parameters in quantum systems. The dynamical free energy is calculated from the overlap between the initial and the time evolved states (Loschmidt amplitude). In a recent study it was suggested that DPTs are related to the equilibrium phase transitions (EPTs) (Heyl, M. et al. Phys. Rev. Lett. 110, 135704 (2013)). We here study an exactly solvable model, the extended XY model, the Loschmidt amplitude of which provides a counterexample. We show analytically that the connection between the DPTs and the EPTs does not hold generally. Analysing also the general compass model as a second example, assists us to propound the physical condition under which the DPT occurs without crossing the equilibrium critical point, and also no DPT by crossing the equilibrium critical point.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.