Abstract
Correlations in the motion of reptating polymers in a melt are investigated by means of Monte Carlo simulations of the three-dimensional slithering-snake version of the bond-fluctuation model. Surprisingly, the slithering-snake dynamics becomes inconsistent with classical reptation predictions at high chain overlap (created either by chain length N or by the volume fraction phi of occupied lattice sites), where the relaxation times increase much faster than expected. This is due to the anomalous curvilinear diffusion in a finite time window whose upper bound tau+(N) is set by the density of chain ends phi/N. Density fluctuations created by passing chain ends allow a reference polymer to break out of the local cage of immobile obstacles created by neighboring chains. The dynamics of dense solutions of "snakes" at t<<tau+ is identical to that of a benchmark system where all chains but one are frozen. We demonstrate that the subdiffusive dynamical regime is caused by the slow creeping of a chain out of its correlation hole. Our results are in good qualitative agreement with the activated-reptation scheme proposed recently by Semenov and Rubinstein (Eur. Phys. J. B, 1 (1998) 87). Additionally, we briefly comment on the relevance of local relaxation pathways within a slithering-snake scheme. Our preliminary results suggest that a judicious choice of the ratio of local to slithering-snake moves is crucial to equilibrate a melt of long chains efficiently.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.