Abstract
1H spin-lattice Nuclear Magnetic Resonance relaxometry experiments have been performed for collagen and collagen-based artificial tissues in the frequency range of 10 kHz-20MHz. The studies were performed for non-hydrated and hydrated materials. The relaxation data have been interpreted as including relaxation contributions originating from 1H-1H and 1H-14N dipole-dipole interactions, the latter leading to Quadrupole Relaxation Enhancement effects. The 1H-1H relaxation contributions have been decomposed into terms associated with dynamical processes on different time scales. A comparison of the parameters for the non-hydrated and hydrated systems has shown that hydration leads to a decrease in the dipolar relaxation constants without significantly affecting the dynamical processes. In the next step, the relaxation data for the hydrated systems were interpreted in terms of a model assuming two-dimensional translational diffusion of water molecules in the vicinity of the macromolecular surfaces and a sub-diffusive motion leading to a power law of the frequency dependencies of the relaxation rates. It was found that the water diffusion process is slowed down by at least two orders of magnitude compared to bulk water diffusion. The frequency dependencies of the relaxation rates in hydrated tissues and hydrated collagen are characterized by different power laws (ωH-β, where ωH denotes the 1H resonance frequency): the first of about 0.4 and the second close to unity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.