Abstract
In pianos, the transfer of energy from strings to soundboard and the radiation of sound are highly dependent on the dynamical properties of the soundboard. In this paper, a numerical study is conducted for various rib configurations, showing that even slight irregularities in rib spacing can induce a strong localization of the soundboard velocity pattern. The effective vibrating area can be further reduced due to the spatial filtering effect of the bridge. Numerical predictions of modal shapes and operating deflection shapes are confirmed by series of measurements made on upright piano soundboards. Simulations of radiated pressure based on measured and calculated soundboard velocity fields show that localization tends to broaden the cone of directivity and to reduce the number of lobes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.