Abstract

Living cells often alternate between proliferating and nonproliferating states as part of individual or collective strategies to adapt to complex and changing environments. To this aim, they have evolved a biochemical regulatory network enabling them to switch between cell-division cycles (i.e., oscillatory state) and cell-cycle arrests (i.e., steady state) in response to extracellular cues. This can be achieved by means of a variety of bifurcation mechanisms that potentially give rise to qualitatively distinct cell-cycle arrest properties. In this paper, we study the dynamics of a minimal biochemical network model in which a cell-division oscillator and a differentiation switch mutually antagonize. We identify the existence of three biologically plausible bifurcation scenarios organized around a codimension-four swallowtail-homoclinic singularity. As a result, the model exhibits a broad repertoire of cell-cycle arrest properties in terms of reversibility of these arrests, tunability of interdivision time, and ability to track time-varying signals. This dynamic versatility would explain the diversity of cell-cycle arrest strategies developed in different living species and functional contexts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.