Abstract

We propose to generate Einstein-Podolsky-Rosen (EPR) entanglement between groups of atoms in a two-well Bose-Einstein condensate using a dynamical process similar to that employed in quantum optics. The local nonlinear S-wave scattering interaction has the effect of creating a spin squeezing at each well, while the tunneling, analogous to a beam splitter in optics, introduces an interference between these fields that results in an inter-well entanglement. We consider two internal modes at each well, so that the entanglement can be detected by measuring a reduction in the variances of the sums of local Schwinger spin observables. As is typical of continuous variable (CV) entanglement, the entanglement is predicted to increase with atom number, and becomes sufficiently strong at higher numbers of atoms that the EPR paradox and steering non-locality can be realized. The entanglement is predicted using an analytical approach and, for larger atom numbers, stochastic simulations based on truncated Wigner function. We find generally that strong tunnelling is favourable, and that entanglement persists and is even enhanced in the presence of realistic nonlinear losses.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call