Abstract

We study a model for the emergence of collective decision making, consisting of N interacting agents, whose opinions are described by Ising spin variables. In particular, we present dynamical phase transitions from ordered to chaotic behavior in the space-time evolution of the binary choice network. One focus of this study is the determination of critical parameters, where the network is placed “at the edge of chaos,” i.e., at a subtle compromise between stability and flexibility, where the system has both, the necessary stability and the potential for “evolutionary” improvements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.