Abstract

The dynamical phase transitions in two-dimensional fully frustrated Josephson junction arrays at zero temperature are investigated numerically with the resistively shunted junction model through the fluctuating twist boundary condition. The model is subjected to a driving current with nonzero orthogonal components i x , i y parallel to both axes of the square lattice. We find a roughly lattice size independent phase diagram with three dynamical phases: a pinned vortex lattice phase, a moving vortex lattice phase and a moving plastic phase. The phase diagram shows a direct transition from the pinned vortex to the moving vortex phase and the separation of the pinned vortex and the moving plastic phases. The time-dependent voltages v x and v y are periodic in the moving vortex lattice phase. But they are aperiodic in the moving plastic phase, resulting in non-monotonic characteristics and hysteresis in the current-voltage curves. It is found that the characteristic frequency is twice the time-averaged voltage in the moving vortex phase and around the time-averaged voltage in the plastic flow regime.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call