Abstract

We investigate the dynamical phase transitions in two representative kinetically constrained models, the 1D Fredrickson-Andersen and East models, by utilizing a recently developed s,g double-bias ensemble approach. In this ensemble, the fields s and g are applied to bias the dynamical activity and trajectory energy, respectively, in the trajectory ensemble. We first confirm that the dynamical phase transitions are indeed first-order in both the models. The phase diagrams in (s, g, T) space obtained via extensive numerical simulations show good qualitative agreement with the mean-field results. We also demonstrate that the temperature-dependent dynamical phase transition is possible in the systems when both fields are applied simultaneously. The trajectory energy and dynamical activity exhibit strong correlations for both systems. From extensive finite-size scaling analyses using the system size and observation time, we obtain scaling functions for the susceptibility and field and find scaling exponents that are model-dependent.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call