Abstract

We present a thorough inspection of the dynamical behavior of epidemic phenomena in populations with complex and heterogeneous connectivity patterns. We show that the growth of the epidemic prevalence is virtually instantaneous in all networks characterized by diverging degree fluctuations, independently of the structure of the connectivity correlation functions characterizing the population network. By means of analytical and numerical results, we show that the outbreak time evolution follows a precise hierarchical dynamics. Once reached the most highly connected hubs, the infection pervades the network in a progressive cascade across smaller degree classes. Finally, we show the influence of the initial conditions and the relevance of statistical results in single case studies concerning heterogeneous networks. The emerging theoretical framework appears of general interest in view of the recently observed abundance of natural networks with complex topological features and might provide useful insights for the development of adaptive strategies aimed at epidemic containment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.