Abstract

Achieving a direct nonequilibrium simulation for hydrogen systems has been quite challenging because nuclear quantum effects (NQEs) have to be taken into account. We directly simulated nonequilibrium hydrogen molecules under a temperature gradient with the recently developed nonempirical molecular dynamics method, which describes nonspherical hydrogen molecules with the NQEs. We found dynamical ordering purely induced by heat flux, which should be distinguished from static ordering like orientational alignment, as decelerated translational motions and enhanced intensity of H-H vibrational power spectra despite the little structural ordering. This dynamical ordering, which was enhanced with stronger heat flux while independent of system size, can be regarded as self-solidification of hydrogen molecules for their efficient heat conduction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.